250_000		
co	Name	Description
1000	lake	Body of water located inland
	Moraine and	
1001	undifferentiated cover	Accumulation of unconsolidated glacial debris (soil and rock) transported by a glacier
1002	Lithology unknown	Outcrops with unknown lithology
1003	Jurassic mafic dikes	Basaltic lavas and minor intrusions of Jurassic age crop out at several localities in western Dronning Maud Land. Flood basalts and dikes are exposed at Vestfjella, Heimefrontfjella and Kirwanveggen, whereas dikes are exposed in the Ahlmannryggen, Mannefallknausane and H.U. Sverdrupfjella areas. The basaltic lavas are cut by the mafic dikes and the gabbroic intrusions. The lavas and intrusions were formed during the Gondwana break-up.
1004	Jurassic basalt	Basaltic lavas and minor intrusions of Jurassic age crop out at several localities in western Dronning Maud Land. Flood basalts and dikes are exposed at Vestfjella, Heimefrontfjella and Kirwanveggen, whereas dikes are exposed in the Ahlmannryggen, Mannefallknausane and H.U. Sverdrupfjella areas. The basaltic lavas are cut by the mafic dikes and the gabbroic intrusions. The lavas and intrusions were formed during the Gondwana break-up.
1005	Jurassic gabbro	Basaltic lavas and minor intrusions of Jurassic age crop out at several localities in western Dronning Maud Land. Flood basalts and dikes are exposed at Vestfjella, Heimefrontfjella and Kirwanveggen, whereas dikes are exposed in the Ahlmannryggen, Mannefallknausane and H.U. Sverdrupfjella areas. The basaltic lavas are cut by the mafic dikes and the gabbroic intrusions. The lavas and intrusions were formed during the Gondwana break-up.
1006	Sistefjell syenite	The Sistefjell intrusion is approximately 10 km in diameter and is the largest Mesozoic pluton in western Dronning Maud Land. The main intrusive phase is a Si-saturated syenite consisting of alkali feldspar, quartz, sodic-calcic amphibole, aegirine-augite, and minor fayalite, aegirine and aenigmatite. Associated sills and dikes include fine-grained syenite, quartz porphyry and fine-grained granite.
1007	Tvora syenite (outer layer)	The Jurassic Tvora syenite crops out at the nunatak Tvora and consists of a quartz syenite (Si-saturated) pluton approximately 3 km in diameter, which intrudes gneisses of the Jutulrøra complex. Two lithological facies have been recognized, an outer layer and an inner layer. The outer layer is mesocratic syenite with a locally melanocratic part. The outer layer is coarse grained, homogeneous and contains varying proportions of perthite, amphibole, clinopyroxene, biotite and opaques. Quartz and fayalite occur in the melanocratic parts.
1008	Tvora syenite (inner layer)	The Jurassic Tvora syenite crops out at the nunatak Tvora and consists of a quartz syenite (Si-saturated) pluton approximately 3 km in diameter, which intrudes gneisses of the Jutulrøra complex. Two lithological facies have been recognized, an outer layer and an inner layer. The inner layer is a plug-like leucocratic intrusion with xenoliths of the outer layer (mesocratic syenite). The inner layer is composed of perthite, plagioclase, clinopyroxene, hornblende, olivine, nepheline and magnetite
1009	Straumsvola syenite (outer layer)	The Jurassic Straumsvola syenite is well exposed, approximately 7 km in diameter and intrudes the Proterozoic Jutulrøra complex. The Straumsvola syenite is a coarse-grained nepheline syenite composed of alkali-feldspar, nepheline and variable quantities of mafic minerals (e.g. Na-clinopyroxene, amphibole and biotite). The Straumsvola syenite is composed of a massive outer layer and a layered central layer.
1010	Straumsvola syenite (mesocratic layer)	The Jurassic Straumsvola syenite is well exposed, approximately 7 km in diameter and intrudes the Proterozoic Jutulrøra complex. The Straumsvola syenite is a coarse-grained nepheline syenite composed of alkali-feldspar, nepheline and variable quantities of mafic minerals (e.g. Na-clinopyroxene, amphibole and biotite). The mesocratic syenite layer is ca. 5 m wide near vertical, ring dike-like, discordant body, which divides the Straumsvola syenite into central and outer parts.
1011	Straumsvola syenite (central layer)	The Jurassic Straumsvola syenite is well exposed, approximately 7 km in diameter and intrudes the Proterozoic Jutulrøra complex. The Straumsvola syenite is a coarse-grained crystalline nepheline syenite composed of alkali-feldspar, nepheline and variable quantities of mafic minerals (e.g. Na-clinopyroxene, amphibole and biotite). The Straumsvola syenite is composed of a massive outer layer and a layered central layer. The central layer consists of a 350 m thick sequence where the layering is defined by varying amounts of alkali-feldspar and mafic minerals.

		Carboniferous-Permian sedimentary rocks crop out at Vestfjella and are composed of sandstones, siltstones, shales and mudstones. The
	Carboniferous-Permian	sedimentary strata also contain black shale layers, which contain a relatively rich and well-preserved palynoflora as well as macroscopic plant
1012	sedimentary rocks	fossils.
		Amelang Formation unconformably overlies the Urfjell Group. The Amelang Formation comprises sandstones and conglomerates and is
1013	Amelang Formation	characterized by numerous ferruginous concretions (15 cm in diameter), which occur in the higher part of the sequence.
1014		The Urfjell Group (maximum thickness of 1650m) is a tectonically controlled package of very low-grade meta-sandstones and mudstones. The Urfjell Group represents a braided to sheetwash fluvial system, possibly deposited within a half graben setting. The Urfjell Group has suffered moderate deformation prior to the deposition of the overlying Amelang Formation. The Urfjell Group is divided into four mappable units (i.e. Urnosa Formation, Tunga Formation, Kuvungen Formation and Uven Formation). The Urnosa Formation is a 200 m thick sequence of
1014	Urnosa Formation	sandstones, micaceous sandstones and mudstones.
1015	Kuvungen Formation	The Urfjell Group (a maximum thickness of 1650m) is a tectonically controlled package of very low-grade meta-sandstones and mudstones. The Urfjell Group represents a braided to sheetwash fluvial system, possibly deposited within a half graben setting. The Urfjell Group has suffered moderate deformation prior to the deposition of the overlying Amelang Formation. The Urfjell Group is divided into four mappable units (i.e. Urnosa Formation, Tunga Formation, Kuvungen Formation and Uven Formation). The Kuvungen Formation is a 480 m thick package of fine-grained to pebbly cross-bedded sandstones and gravels.
1016	Tunga Formation	The Urfjell Group (a maximum thickness of 1650m) is a tectonically controlled package of very low-grade meta-sandstones and mudstones. The Urfjell Group represents a braided to sheetwash fluvial system, possibly deposited within a half graben setting. The Urfjell Group has suffered moderate deformation prior to the deposition of the overlying Amelang Formation. The Urfjell Group is divided into four mappable units (i.e. Urnosa Formation, Tunga Formation, Kuvungen Formation and Uven Formation). The 380 m thick Tunga Formation is lithologically similar to the Uven Formation and consists of green to grey, moderately sorted, medium-grained to pebbly monotonous sandstones and conglomerates with interbeds of arkose and shale.
1010		The Urfjell Group (a maximum thickness of 1650m) is a tectonically controlled package of very low-grade meta-sandstones and mudstones.
1017	Uven Formation	The Urfjell Group represents a braided to sheetwash fluvial system, possibly deposited within a half graben setting. The Urfjell Group has suffered moderate deformation prior to the deposition of the overlying Amelang Formation. The Urfjell Group is divided into four mappable units (i.e. Urnosa Formation, Tunga Formation, Kuvungen Formation and Uven Formation). The basal Uven Formation is tectonically in contact with basement and consists of 425 m of green to grey, moderately sorted, medium-grained to pebbly monotonous sandstones. Small to large scale cross bedding is common.
1018	Mafic dikes	The mafic dikes (Neoproterozoic-Early Cambrian - 488-434 Ma) consist of biotite, clinopyroxene, plagioclase, amphibole ± orthopyroxene. Accessory minerals are ilmenite, apatite, magnetite and sulfide minerals. The dikes are some tens of centimeters to several tens of meters thick. Distinct chilled margins are commonly observed. The dikes intrude Paleozoic granite, but are locally cut by the younger veins of Paleozoic granite and pegmatite. Some dikes show a distinct schistose structure parallel to the margins.
1010	Svenite dikes	Syenite dikes are melanocratic alkaline rocks, which intrude the central and northern parts of the Brattskarvet granites. The dikes appear locally with gradational margins against the host (Brattskarvet granites), as rows of disrupted fragmental segments, as scattered enclaves and as poorly defined schlieren. The rocks consist of perthitic K-feldspar, sodic augite or aegirine augite, amphibole and biotite. Plagioclase is generally absent, and minor quartz occurs in a few specimens. The mafic minerals are present as inclusions in K-feldspar. Secondary actinolite overgrows augite and arfvedsonite and occurs as large, interstitial, anhedral aggregates. Apatite and titanite are minor constituents, and allanite, zircon and monazite are accessory phases. Catapleiite and aenigmatite have been provisionally identified.
1013	Syenite uikes	Post-tectonic (i.e. post-Pan-African) dikes and stocks of granite, aplite and pegmatite are < 1 m to several tens of meters in width. In most
1020	Granite, syenite, in part charnockite	cases the contact with the host rocks is sharp. The granites are reddish, gray and light gray, usually fine- to medium-grained and massive. They are composed of K-feldspar, plagioclase, quartz and biotite, with or without hornblende. Aplite and pegmatite are light gray or pinkish, composed mainly of plagioclase, quartz and K-feldspar, with or without biotite.

1021	Brattskarvet granite	The Brattskarvet granite (419 ± 4 Ma) comprises monzonite, quartz monzogranite and monzogranite, and syenitic dikes. Gradational transitions between these lithologies suggest large-scale stratification. The Brattskarvet granites intrude the Rootshorga complex in the northern extremity of H.U. Sverdrupfjella. The massif covers an area of ca. 100 km ² . The granitoids are strongly foliated along their margins, whereas a weak foliation is present within the batholith. The main fabric in the surrounding gneisses is conformable with the outline of the intrusion. A weak alignment of biotite and schlieren relicts is present. Local weak layering/foliations, augen gneiss texture, agmatitic amphibolites and xenoliths of country rocks suggest that the batholith has a funnel-like structure. The lack of any penetrative foliation in the Brattskarvet granites indicates that these intrusions post-dated significant deformation.
1022	Metagabbro	Metagabbro (Neoproterozoic) occurs as small pods of mafic material, which intrude the gneisses of the Kirwanveggen complex. The unit comprises amphibole, garnet, pyroxene, feldspar and quartz.
1023	Diorite	Diorite (Neoproterozoic) occurs as small pods of mafic material, which intrude the Uven Formation of the Urfjell Group. The diorite comprises amphibole, garnet, pyroxene, feldspar and quartz.
1024	Charnockite	Charnockite is a huge body of a coarse-grained, granitic-syenitic igneous rock, which occurs from Hochlinfjellet eastward to the Oddesteinen area. These rocks represent a young event of plutonism. The rocks are clearly distinguished by their dark brown color, which is recognizable even from a long distance. Intrusive contacts of the charnockite to the surrounded metamorphic rocks were observed at several places. Small dikes and veins of the charnockite are observed. Numerous angular xenoliths of gneisses and country rocks are found in the charnockite. The rocks have a coarse-grained, subangular mosaic texture, locally phenocrystic, and consist of dark quartz, mesoperthitic K-feldspar and antiperthitic plagioclase, hornblende, biotite, orthopyroxene, clinopyroxene and locally olivine. Olivine grains are mostly serpentinized, clinopyroxene is enclosed in hornblende, and orthopyroxene has exsolution lamellae and is commonly replaced by biotite-quartz aggregates.
1025	Anorthosite/meta- anorthosite	Anorthosite/meta-anorthosite (625 - 506 Ma) intruded a basement consisting of supracrustal rocks comprising pelitic schists, quartzites, marbles, calc-silicate rocks, metavolcanics and orthogneisses. The anorthosite/meta-anorthosite is divided into two complexes and are associated with gabbroic and noritic rocks: i) a large complex about 900 Km ² in area in Gruberfjella and ii) a smaller complex in the northern part of the Humboldtfjella. The anorthosite/meta-anorthosite comprise variable amounts of leucogabbro, leuconorite, gabbro and norite. Where they are undeformed and consist of a mesh of plagioclase crystals, and interstitial pyroxene, magnetite and ilmenite. Layers and lenses of ultramafic composition can be found. The anorthosite/meta-anorthosite is cut by pegmatitic dikes up to 10 m wide and a few hundred meters long.
1026	Granite and syenite	Granite and syenite are medium-grained, weakly foliated homogeneous granitic bodies. The granite contains subangular xenoliths of the surrounding metamorphic rocks. A faint gneissosity is locally visible and defined by the variation of biotite content. The granite and granosyenite are cut by veins and dikes of pegmatites, granitic composition. The granites and granosyenites are composed of microcline, K-feldspar, plagioclase, quartz, biotite and hornblende. Apatite, sphene, tourmaline, zircon, ilmenite and epidote are accessories.
1027	Gabbro	Gabbroic intrusions are usually present as small intrusions. A larger gabbro intrusion (up to 15 km in diameter) crop out in the Zwieselhøgda area and is interfingering with granitoid rocks. The gabbro is medium- to coarse-grained and is composed of plagioclase and pigeonite, the latter hosts augitic pyroxene lamellae. Minor phases are magnetite, ilmenite, amphiboles (cummingtonite and ferrotschermakite), orthopyroxene, apatite, antiperthite, zircon and rare olivine. Retrogressed parts of the gabbro contain biotite and increasing amounts of amphiboles are found.
1028	Granodiorite-diorite	This unit occurs as dikes ranging in width from several meters to approximately ten meters. The rock is melanocratic to mesocratic and fine- to medium-grained. In places, the rocks show agmatitic and schollen structures with a predominant neosome. The granodiorite-diorite comprise biotite, K-feldspar, plagioclase, quartz, ± clinopyroxene ± hornblende.
1029	Olivine monzonite	Olivine monzonite is coarse-grained and is characterized by dark greenish gray to dark brownish gray color. The rock is characterized by large idiomorphic crystals of mesoperthite, and consists of clinopyroxene, olivine, orthopyroxene and antiperthitic plagioclase with minor zircon, apatite and iron oxide. Both biotite and hornblende occur as fine-grained flakes surrounding orthopyroxene and clinopyroxene, respectively. Locally the monzonite is bleached along later pegmatite or aplite. The bleached part contains large amounts of secondary biotite and hornblende instead of olivine, orthopyroxene and clinopyroxene.

		This unit include layered syenite, melanocratic syenite, quartz syenite, porphyritic syenite and coarse syenite. The layered syenite shows conspicuous rhythmic layering ranging from a few cm to a few m in thickness. Euhedral K-feldspar and mafic minerals in the syenite show preferred orientation. In some places at the contact between the syenite and the country rocks, mylonitic structures which is parallel to the contact can be observed. Small dikes of fine-grained melanocratic syenite discordantly intrude into the layered syenite. Medium- to fine-grained quartz syenite occurs as dikes, sheets or lenticular veins intruding the layered syenite and the melanocratic syenite. The layered syenite is composed mainly of K-feldspar, biotite, amphibole and pyroxene with accessory sphene, apatite, zircon, and magnetite. The melanocratic syenite shave minerals of the same assemblage as the layered syenite, but they are fine-grained and very rich in mafic minerals. The quartz syenite contains K-feldspar, plagioclase, quartz and amphibole with or without biotite and pyroxene. The porphyritic syenite is medium- to coarse-grained characterized by porphyritic texture of potash feldspar. The coarse syenite is very coarse-grained massive syenite.
1030	Pyroxene syenite	The coarse syenite is light-colored due to dominant K-feldspar which is 2-3 cm in size.
1031	Granodiorite-diorite	This unit (620-500 Ma) occurs as dikes ranging in width from several meters to approximately ten meters. The rock is melanocratic to mesocratic and fine- to medium-grained. In places, the rocks show agmatitic and schollen structures with a predominant neosome. The granodiorite-diorite comprise biotite, K-feldspar, plagioclase, quartz, ± clinopyroxene ± hornblende.
1032	Metagabbro (Balchenfjella)	Metagabbro (Balchenfjella; 620-500 Ma) forms a lenticular body, nearly a kilometer long, within the migmatitic gneisses near the north end of Berrheia. The metagabbro is weakly foliated and dark-colored. Lath-shaped plagioclase crystals are occasionally observed on the weathered surface. The mineral assemblage is orthopyroxene, clinopyroxene, hornblende, biotite, plagioclase, quartz ± garnet.
1033	Syenite	The rock (550-530 Ma) is melanocratic, fine- to medium-grained, gray to dark gray and shows a weak foliation due to the orientation of mafic minerals and inclusions. This pyroxene-free facies is relatively massive compared with the pyroxene syenite. The syenite is intruded by dikes of granitic and basic (metamorphosed) composition. The syenite comprise hornblende, biotite and K-feldspar with minor plagioclase and quartz. Titanite, apatite, zircon and opaque minerals are accessory phases.
		Pyroxene syenite is composed of layered syenite, melanocratic syenite, quartz syenite, porphyritic syenite and coarse syenite, and is dated to 550-530 Ma. The layered syenite shows conspicuous rhythmic layering ranging from a few cm to a few m in thickness. Euhedral K-feldspar and mafic minerals in the syenite show preferred orientation. In some places at the contact between the syenite and the country rocks, mylonitic structures which is parallel to the contact can be observed. Small dikes of fine-grained melanocratic syenite intrude the layered syenite. Medium- to fine-grained quartz syenite occurs as dikes, sheets or lenticular veins intruding the layered syenite and the melanocratic syenite. The layered syenite is composed mainly of K-feldspar, biotite, amphibole and pyroxene with accessory sphene, apatite, zircon, and magnetite. The melanocratic syenites have the same minerals as the layered syenite, but they are fine-grained and rich in mafic minerals. The quartz syenite contains K-feldspar, plagioclase, quartz, amphibole ± biotite ± pyroxene. The porphyritic syenite is medium- to coarse-grained
1034	Pyroxene syenite	characterized by porphyritic texture of K-feldspar. The coarse syenite is massive, light-colored and with K-feldspar crystals up to 2-3 cm in size.
		The calc-alkaline Nils Larsenfjellet tonalitic gneiss (772-730 Ma) crops out in the northern end of Nils Larsenfjellet and the southeastern end of Widerøefjellet. The tonalitic gneiss in Nils Larsenfjellet is sometimes mingled with granitic and quartz dioritic rocks. A weak mylonitic texture is identified under the microscope. The rocks are mainly composed of plagioclase, quartz, and biotite, with minor amounts of alkali-feldspar. The
1035	Tonalitic gneiss	accessory minerals are epidote, apatite, zircon, rutile, titanite, and opaque minerals. Plagioclase often shows oscillatory zoning. Pelitic gneiss and schist are medium- to coarse-grained garnet-quartz-K feldspar-bearing rocks. Biotite, sillimanite, cordierite and plagioclase are major phases. Hornblende- and pyroxene-bearing assemblages can be found. Kyanite occur as inclusions in garnet (for example in the Medmulen area). Andalusite may occur as large fresh porphyroblasts which are overgrown by biotite and/or sillimanite. The pelitic gneisses and schists are intercalated with calc-silicate, marbles, metaquartzite and felsic granitic gneisses. Intercalation of garnet-bearing amphibolite
1036	Pelitic gneiss and schist	and orthopyroxene-bearing gneisses occurs locally. Banded gneiss includes brown pyroxene-bearing gneiss, leucocratic gneiss, metapelite and garnet amphibolite. The gneisses have experienced
1037	Banded gneiss	widespread anatexis. The banded gneisses reveal a variable grain size on the sample scale, being characteristic for the different layers defining the foliation. The granoblastic matrix is made up of anhedral quartz and feldspar grains. Biotite flakes show a preferred orientation and are

		concentrated in thin layers together with pyroxene. Garnet is evenly distributed throughout the rock. Apatite, monazite, zircon, and ilmenite
		are accessory minerals.
	Metamorphosed ultramafic	Two narrow dike-like bodies of serpentinized ultramafic composition are observed in southern Spøta, Hochlinfjellet. The outcrops are
1038	rocks	inaccessible, although samples of the rocks were found in a moraine.
		Amphibolite commonly occurs as layers and lenses up to a few tens of meters across, which are concordant or sub-concordant with the host
		rocks. Discordant amphibolites occur as small bodies enclosed in gneisses, calc-silicate rocks and syenites. The amphibolite is locally massive.
		The principal minerals are amphibole, clinopyroxene and biotite, with subordinate amounts of plagioclase, K-feldspar and quartz. In higher
1039	Amphibolite	grade lithologies garnet, clinopyroxene and orthopyroxene are present in the assemblages.
		Mafic and ultramafic rocks, metamorphosed at amphibolite- and granulite facies conditions, occur as lenses up to several meters in country
	Banded gneiss	rocks. The lenses consist of clinopyroxene, amphibole, olivine, plagioclase, biotite and opaque mineral. These rocks are dark-colored due to a
1040	(metavolcanics)	dark gray plagioclase and the abundant mafic minerals such as garnet and clinopyroxene.
		The marble, calc-silicate rock and skarn unit occurs mostly as concordant or sub-concordant layers and lenses up to several tens of meters
		across within the country rocks. The calc-silicate rocks form small pods enclosed in marble, bands between marble and adjacent gneisses, and
		layers and lenses up to a few meters across intercalated with biotite-hornblende gneiss and amphibolite. Calc-silicate rocks are composed of
	Marble, calc-silicate rock	wollastonite, scapolite, clinopyroxene, olivine, garnet, anorthitic plagioclase, calcite, quartz, graphite, sphene and zircon. The marble is
1041	and skarn	composed of calcite with less scapolite, phlogopite, clinopyroxene, graphite and zircon.
		The garnet-biotite gneiss includes pelitic, quartzofeldspathic and feldspathic rocks enriched in biotite, garnet, sillimanite, plagioclase, K-
		feldspar, quartz and rarely corundum, hercynite or gahnite. Kyanite is present in some places. Locally, retrograde metamorphism results in
		resorption of garnet by secondary biotite. The gneisses exhibit granoblastic to lepidoblastic texture, and range from medium- to coarse-
1042	Garnet-biotite gneiss	grained. Migmatitic or augen structures are locally developed.
		Pelitic gneiss and schist are medium- to coarse-grained garnet-quartz-K feldspar-bearing rocks. Biotite, sillimanite, cordierite and plagioclase
		are major phases. Hornblende- and pyroxene-bearing assemblages can be found. Kyanite occur as inclusions in garnet (for example in the
		Medmulen area). Andalusite may occur as large fresh porphyroblasts which are overgrown by biotite and/or sillimanite. The pelitic gneisses
		and schists are intercalated with calc-silicate, marbles, metaquartzite and felsic granitic gneisses. Intercalation of garnet-bearing amphibolite
1043	Pelitic gneiss and schist	and orthopyroxene-bearing gneisses occurs locally.
		Banded gneiss includes brown pyroxene-bearing gneiss, leucocratic gneiss, metapelite and garnet amphibolite. The gneisses have experienced
		widespread anatexis. The granoblastic matrix is made up of anhedral quartz and feldspar grains. Biotite flakes show a preferred orientation
		and are concentrated in thin layers together with pyroxene. Garnet is evenly distributed throughout the rock. Apatite, monazite, zircon, and
1044	Banded gneiss	ilmenite are accessory minerals.
	Mafic gneiss and	Mafic and ultramafic rocks are metamorphosed in the amphibolite or granulite facies field. They occur as lenses, up to several meters long,
	schist/mafic lenses and	within host gneisses. The mafic rocks consist of clinopyroxene, amphibole, olivine, plagioclase, biotite, garnet and opaque mineral.
1045	dikes	
		The garnet-biotite gneiss includes pelitic, quartzofeldspathic and feldspathic rocks enriched in biotite, garnet, sillimanite, plagioclase, K-
		feldspar, quartz and rarely corundum, hercynite or gahnite. Kyanite is present in some places. Locally, retrograde metamorphism results in
		resorption of garnet by secondary biotite. The gneisses exhibit granoblastic to lepidoblastic texture, and range from medium- to coarse-
1046	Garnet-biotite gneiss	grained. Migmatitic or augen structures are locally developed.
	Sillimanite-garnet-biotite	The sillimanite-garnet-biotite gneiss is intercalated with garnet-biotite gneisses. Staurolite has been found in sillimanite-spinel-corundum-
1047	gneiss	garnet-biotite gneiss, which also contain cordierite, plagioclase, K-feldspar and quartz. Orthopyroxene and gedrite occur locally.
		The gneisses are coarse- to medium-grained with granoblastic texture, and range from mafic to intermediate in composition. Melanocratic
	Garnet-biotite-hornblende	(biotite- and/or hornblende-rich) and leucocratic (plagioclase-rich) layers, from 1 cm or less, to more than 10 cm in thickness, are developed.
1048	gneiss	The mineral assemblage is composed of garnet, biotite, amphibole, plagioclase, quartz ± clinopyroxene ± orthopyroxene.

		The bighte boundaries and the second weak weit due to the elementian of bighte boundaries and successful another beaution by
		The biotite-hornblende gneiss is a well-layered rock unit due to the alternation of biotite-hornblende-rich and quartzofeldspathic bands.
		Relative proportions of mafic and felsic minerals vary even within a band. It is composed mainly of hornblende, biotite, plagioclase, K-feldspar and quartz, with minor amounts of apatite, zircon, sphene and opaque minerals. Clinopyroxene can be observed. The biotite-hornblende
1049	Piatita harablanda gaaiss	gneiss commonly alternates with amphibolite and hornblende gneisses and in places is accompanied by layers and lenses of garnet-biotite
1045	Biotite-hornblende gneiss	gneisses, calc-silicate rocks, and mafic granulite lenses.
		Amphibolite commonly occurs as layers and lenses up to a few tens of meters across, which are concordant or sub-concordant with the host
		rocks. Discordant amphibolites occur as small bodies enclosed in gneisses, calc-silicate rocks and syenites. The amphibolite is locally massive.
1050	A man hika lita	The principal minerals are amphibole, clinopyroxene and biotite, with subordinate amounts of plagioclase, K-feldspar and quartz. In higher
1050	Amphibolite	grade lithologies garnet, clinopyroxene and orthopyroxene are present in the assemblages.
		Mafic and ultramafic granulites occur in lenses up to several meters in the country rocks. These lenses consist of clinopyroxene,
		orthopyroxene, amphibole, olivine, plagioclase, biotite and opaque mineral. Sapphirine may be found. This rock is characteristically poorly
1051		foliated and dark-colored due to a dark gray color of plagioclase in addition to abundant mafic minerals such as garnet, clinopyroxene and
1051	Mafic granulite/mafic lenses	orthopyroxene. A reaction zone between these lenses and the country rocks may occur where micas and amphiboles are developed.
		The Marble, calc-silicate and skarn occur mostly as concordant or subconcordant layers and lenses up to several tens of meters across in the
		country rocks. The calc-silicate rocks form small pods enclosed in the marble, bands between the marble and adjacent gneisses, and layers and
		lenses up to a few meters across intercalated in the biotite-homblende gneiss and amphibolite. Cale-silicate rock is composed of wollastonite,
1052	Marble, calc-silicate rock	scapolite, clinopyroxene, olivine, garnet, anorthitic plagioclase, calcite, quartz, graphite, sphene and zircon. The marble is composed of calcite
1052	and skarn	with less scapolite, phlogopite, clinopyroxene, graphite and zircon.
		The garnet-biotite gneiss includes pelitic, quartzofeldspathic and feldspathic rocks enriched in biotite, garnet, sillimanite, plagioclase, K-
		feldspar, quartz and rarely corundum, hercynite or gahnite. Kyanite is present in some places. Locally, retrograde metamorphism results in
1052		resorption of garnet by secondary biotite. The gneisses exhibit granoblastic to lepidoblastic texture, and range from medium- to coarse-
1053	Garnet-biotite gneiss	grained. Migmatitic or augen structures are locally developed.
1054	Sillimanite-garnet-biotite	The sillimanite-garnet-biotite gneiss is intercalated with garnet-biotite gneisses. Staurolite has been found in sillimanite-spinel-corundum-
1054	gneiss	garnet-biotite gneiss, which also contain cordierite, plagioclase, K-feldspar and quartz. Orthopyroxene and gedrite occur locally.
		The biotite-hornblende gneiss is a layered unit. The layering is defined by alternation of biotite-hornblende-rich and quartzofeldspathic layers.
		The relative proportions of mafic and felsic minerals also varies within the layers. The gneiss is composed mainly of hornblende, biotite,
		plagioclase, K-feldspar and quartz, with minor amounts of apatite, zircon, sphene and opaque minerals. Clinopyroxene are locally present. The
1055		biotite-hornblende gneiss commonly alternates with amphibolite and hornblende gneisses and in places is accompanied by layers and lenses
1055	Biotite-hornblende gneiss	of garnet-biotite gneisses, calc-silicate rocks, and mafic granulite lenses.
		The hornblende gneiss forms concordant hornblende-rich layers, several centimeters to several tens of centimeters thick. Unlike the
1050		amphibolite, the hornblende gneisses is layered with alternating felsic layers. These gneisses are locally associated with calc-silicate rocks.
1056	Hornblende gneiss	Garnet and clinopyroxene is often visible in outcrops of the gneiss.
		The rock is dark greenish gray, medium-grained and has a granoblastic to lepidoblastic texture. The mineral assemblage comprises plagioclase,
1057		quartz, K-feldspar, biotite, hornblende, clinopyroxene ± orthopyroxene. Biotite laths display a strong preferred orientation, defining the
1057	Pyroxene-biotite gneiss	marked gneissosity of the rock. Agmatitc blocks, ribbons and lenses of the pyroxene-biotite gneisses can be found in syenites.
		Amphibolite commonly occurs as layers and lenses up to a few tens of meters across, which are concordant or sub-concordant with the host
		rocks. Discordant amphibolites occur as small bodies enclosed in gneisses, calc-silicate rocks and syenites. The amphibolite is locally massive.
4050		The principal minerals are amphibole, clinopyroxene and biotite, with subordinate amounts of plagioclase, K-feldspar and quartz. In higher
1058	Amphibolite	grade lithologies garnet, clinopyroxene and orthopyroxene are present in the assemblages.
		Migmatitic gneiss is characterized by the presence of agmatic, schollen, stromatic, folded, schlieren and nebulitic structures. Paleosomes of the
		migmatite consist mainly of the biotite-hornblende gneiss, amphibolite, and hornblende gneiss commonly with clinopyroxene; ultramafic and
1059	Migmatitic gneiss	garnet-biotite gneiss paleosomes are rare. Neosomes of the migmatite range from leucocratic granite to granodiorite containing biotite,

		hornblende and locally clinopyroxene. These are commonly foliated due to parallel or subparallel orientation of the mafic minerals. The
		foliated neosomes cut the neighboring country gneisses in some places.
		Charnockite gneiss displays dark-gray color on fresh surfaces. The rock is commonly well-layered defined by alternation of felsic and more
1060	Charnockite gneiss	mafic bands, but is poorly foliated. Small lenses of amphibolite are common in the charnockite gneiss.
1000		Mafic and ultramafic granulite occurs as lenses, up to several meters across, in country rocks. The lenses consist of clinopyroxene,
		orthopyroxene, amphibole, olivine, plagioclase, biotite and opaque mineral. Sapphirine may be found. This rock is poorly foliated and dark-
1061	Mafic granulite/mafic lenses	colored due to a dark color of plagioclase, in addition to abundant mafic minerals such as garnet, clinopyroxene and orthopyroxene. A reaction
1001	Manc granulite/manc lenses	zone between these lenses and the country rocks may occur where micas and amphiboles are developed.
		The marble, calc-silicate rock and skarn occur mostly as concordant or subconcordant layers and lenses, up to several tens of meters across, in the country rocks. The calc-silicate rocks form small pods enclosed in the marble, bands between the marble and adjacent gneisses, and layers
		and lenses up to a few meters across intercalated in the biotite-hornblende gneiss and amphibolite. Calc-silicate rock is composed of
1000	Marble, calc-silicate rock	wollastonite, scapolite, clinopyroxene, olivine, garnet, anorthitic plagioclase, calcite, quartz, graphite, sphene and zircon. The marble is
1062	and skarn	composed of calcite with lesser amounts of scapolite, phlogopite, clinopyroxene, graphite and zircon.
	Granitic gneiss (variable	Granitic gneiss are quartz- and feldspar-rich gneisses which may have granitic (ca. 774 Ma) and/or arkosic (ca. 800 Ma) protolith. This unit is
1000	protolith including granite,	observed in central part of the Schirmacheroasen (Joachim Jacobs; personal communications). The rock unit is bounded to the north by garnet-
1063	arkose)	biotite-rich gneisses and to the south by banded gneisses rich in the mafic minerals.
		Augen gneiss and K-feldspar porphyritic gneissose granite (ca. 772 Ma) of granitic composition. Cordierite, garnet and hornblende are
		occasionally present. Microtexture include isoclinal fold hinges defined by biotite-rich bands. The protoliths are interpreted to be granitoids,
1004		gneisses and migmatite. Thin layers of pink aplitic mylonite are locally observed. In some places (e.g. north of Cumulusfjellet), the rocks are
1064	Augen gneiss and mylonite	strongly schistose, fine-grained, and have a dioritic composition.
		Greenschist to granulite facies rocks (980-915 Ma), predominated by amphibolite facies rocks exposed as small nunataks in the area between
		14° to 21° E. Both metasedimentary and meta-igneous rocks occur. The metasedimentary rocks include highly deformed marble, calc-silicate
		rock and migmatitic metapelites. Garnet-bearing granitic melts are observed to intrude garnet-sillimanite gneisses at Tonyknausane. The
		metasedimentary rocks are intruded by felsic melts, granodiorite and gabbroic sheets. Garnet-bearing migmatites and gneisses typically
		contain garnet, biotite, quartz, plagioclase and K-feldspar, and opaque, apatite and zircon as accessory phases. Muscovite is generally a
		secondary phase. The meta-igneous rocks occur as amphibole gneisses, metavolcanics, partly retrogressed orthopyroxene-bearing
		orthogneisses (enderbites) and late tectonic A-type granitoids. Massive enderbitic gneisses crop out at Bergekongen, Bergtussen, Van
		Autenboerfjellet and Gandfluga, containing quartz, plagioclase, biotite, ortho- and clinopyroxene with accessory apatite and zircon. The
1005	Garnet-biotite-hornblende	enderbites contain coarse-grained leucosomes consisting of blue quartz, pink feldspar and retrogressed orthopyroxene. The enderbites are
1065	gneiss/enderbite/gabbro	intruded by various granitic veins.
		The rocks grouped in this category are relatively homogeneous, having granitic-tonalitic-quartz monzonitic compositions. The rocks display
		faint gneissosity, layers and irregular domains are slightly enriched in biotite. Distinct, dark paleosomes are rarely seen. The rocks have
		amphibolite facies mineral assemblages, granulite facies minerals are locally observed. K-feldspar often occurs as large subidiomorphic prisms.
		Biotite and hornblende are major mafic minerals. Rocks with granulitic assemblages usually have a darker color than those of amphibolite
1000	Granitic gneiss and	facies and contain ortho- and clinopyroxene with biotite, dark feldspar and quartz. They generally have a medium- to coarse-grained
1066	migmatite	granoblastic matrix with. Thin pegmatitic veins occur with sharp contact marked by hornblende-enriched zones a few centimeters wide.
		Calc-alkaline tonalitic gneiss (960-925 Ma) is found in Lunckeryggen, Mefjell and eastern Walnumfjellet. The gneisses mainly consist of
1007		plagioclase, quartz, hornblende and biotite with accessory titanite, apatite, zircon, rutile, and opaque minerals. The microtexture is
1067	Calc-alkaline tonalitic gneiss	granoblastic, hornblende and biotite show a preferred orientation. Hornblende and plagioclase may have a euhedral to subhedral shape.
		Calc-alkaline metagabbro (995-975 Ma) occupies a small area in southern Lunckeryggen. The metagabbro displays a weak igneous layered
1000		structure and often includes hornblendite xenoliths. The rocks are mainly composed of hornblende, plagioclase and biotite with accessory
1068	Calc-alkaline metagabbro	titanite, apatite, zircon, rutile and opaque minerals Hornblende and plagioclase grains locally show an oblong shape.

		Tholeiitic tonalitic gneiss (995-975 Ma) is the main lithotype found in Nils Larsenfjellet, Widerøefjellet, and Walnumfjellet. The gneisses are composed of plagioclase, quartz, biotite and hornblende, and the accessory minerals are apatite, zircon, rutile, and opaque minerals. The rocks
1000		are have a mylonitic fabric with an E–W structural trend. Elongated hornblende and plagioclase are prominent. The tonalitic gneisses include
1069	Tholeiitic tonalitic gneiss	abundant elongated mafic lenses. The mafic lenses are usually arranged parallel to the foliation of the gneisses; most have chilled margins.
1070	Granitic to granodioritic	
1070	migmatite	Granitic to granodioritic migmatite (1000-750 Ma) are found in Sinnan Rocks and Tenmondai Rock.
1071	Quartzofeldspathic garnet	Quartzofeldspathic garnet gneiss (1000-750 Ma) occurs intercalated with minor mafic to ultramafic granulite layers. This rock units are found
1071	gneiss	on Ongul Island, Langhovde and Skarvsnes.
1072	Granitic gneiss and	Granitic gneiss and gneissose granite (1000-750 Ma) are found in Langhovde and Skallen, locally the gneisses occur with an intrusive relation to
1072	gneissose granite	the surrounding gneisses.
		Garnet is present in a medium-grained groundmass of K-feldspar, plagioclase, quartz and biotite. Orthopyroxene may occur locally. Rare
1070	Garnet-bearing aplitic	accessory phases are opaque minerals, zircon and/or muscovite. The garnet-bearing granite shows diffuse contacts against the syenites. The
1073	granite	texture of the garnet-bearing aplitic granite is subhedral equigranular.
1074		The granitic gneiss is leucocratic, pinkish gray to gray, fine- to medium-grained and strongly foliated. The constituent minerals are biotite, K-
1074	Granitic gneiss	feldspar, plagioclase and quartz, with minor primary muscovite and zircon.
1075		Garnet-biotite gneisses contain sillimanite, cordierite, gedrite, relict kyanite and/or relict staurolite and locally K-feldspar porphyroblasts. Thin
1075	Garnet-biotite gneiss	layers of pyroxene gneiss, hornblende gneiss and biotite-hornblende gneiss are intercalated with the garnet-biotite gneiss.
1070	Biotite gneiss; partly	
1076	migmatized	Biotite gneiss is partly migmatized. The unit occurs in Akebono Rock, Kasumi Rock, Niban Rock and Oku-iwa Rock.
4077		Biotite-hornblende gneiss, contain locally garnet (Sinnan Rocks, Akebono Rock), anthophyllite (Sinnan Rocks, Akebono Rock, Naga-iwa Rock)
1077	Biotite-hornblende gneiss	and cummingtonite (Sinnan Rocks).
1078	Hornblende gneiss	Hornblende gneiss occurs intercalated with pyroxene gneiss and ultramafic gneiss.
1079	Pyroxene gneiss	Pyroxene gneiss contain hornblende and/or biotite, locally garnet. Intercalated with minor mafic to ultramafic gneiss.
	Layered pelitic and	This unit consists mainly of pelitic and psammitic compositions and include layers of garnet-biotite gneiss, quartzofeldspathic garnet gneiss and
1080	psammitic gneiss	minor bands of biotite-hornblende gneiss and pyroxene gneiss.
		Layered gneiss of intermediate composition occurs in the granulite facies, amphibolite facies and the transitional zone. In the amphibolite
		facies and the transitional zones, it consists of biotite-hornblende gneiss, hornblende gneiss and minor layers of garnet-biotite gneiss and
	Layered gneiss of	clinopyroxene-biotite amphibolite. In the granulite facies zone, it consists of pyroxene gneiss and subordinate garnet-biotite gneiss with minor
1081	intermediate composition	mafic to ultramafic lenses.
	Layered gneiss of mafic	This unit is an alternation of almost equal amounts of garnet-biotite gneiss, pyroxene gneiss, biotite-hornblende gneiss and mafic rocks with
1082	composition	minor calc-silicate rocks.
	Marble, calc-silicate rock	
1083	and skarn	Marble, dolomitic marble, calc-silicate rocks and skarn, locally with wollastonite or grossular (ca. 924-1064 Ma).
		The rocks grouped in this category (1050-1200 Ma) are relatively homogeneous, having granitic-tonalitic-quartz monzonitic compositions. The
		rocks display faint gneissosity, layers and irregular domains are slightly enriched in biotite. Distinct, dark paleosomes are rarely seen. The rocks
		have amphibolite facies mineral assemblages, granulite facies minerals are locally observed. K-feldspar often occurs as large subidiomorphic
		prisms. Biotite and hornblende are major mafic minerals. Rocks with granulitic assemblages usually have a darker color than those of
		amphibolite facies and contain ortho- and clinopyroxene with biotite, dark feldspar and quartz. They generally have a medium- to coarse-
		grained granoblastic matrix with. Thin pegmatitic veins occur with sharp contact marked by hornblende-enriched zones a few centimeters
	Granitic gneiss and	wide.
1084	migmatite	

		Heterogeneous migmatite (1050-1200 Ma) may contain up to 50 vol% or more of granitic leucosome. Large areas in southern Gjelsvikfjella and western Mühlig-Hofmannfjella are composed of this rock unit. Paleosome-rich layers commonly reveal distinct banded structures. The paleosomes comprise micaceous gneisses and gneissose amphibolites. In the amphibolite, poikiloblastic hornblende contains clinopyroxene
		inclusions. Prismatic sillimanite are locally present in biotite-rich layers and feldspars are commonly porphyroblastic. The leucosomes have
		heterogeneous granitic composition and show weak irregular foliations with relatively biotite-rich parts. The migmatite include numerous
1085	Heterogeneous migmatite	veins, dikes and domains of pegmatitic and aplitic rocks.
		The Cape Hinode area is dominated by relatively homogeneous, medium- to coarse-grained, dark grey to purple tonalitic gneisses (ca 1000 -
		1100 Ma), which are not known to occur in other parts of the Lützow-Holm Complex. The tonalitic gneiss comprise mainly plagioclase and
		quartz with subordinate biotite or hornblende. Minor K-feldspar, magnetite, ilmenite, zircon, apatite, monazite, titanite and allanite are present. Muscovite, chlorite, epidote and carbonates are common retrograde minerals replacing hornblende, biotite and plagioclase. The
	Tonalitic gneiss (Cape	tonalitic gneiss displays a weak foliation that is folded around a large-scale, tight antiform, trending NW–SE. Probable igneous layering and
1086	Hinode)	lamination are occasionally observed. Small amounts of mafic to intermediate and calc-silicate metamorphic rocks occur as isolated blocks.
	,	The Western granitic gneiss is exposed at Jutulrøra, Brekkerista and Roerkulten, and occurs as sheet-like, concordant and sub-concordant
		intrusions within the Jutulrøra complex. Cross-cutting relationships are locally preserved. The Western granitic gneisses are pale pink,
		equigranular and medium grained, with ca. 25 % quartz and K-feldspar and plagioclase. Poikilitic hornblende and biotite define the foliation.
1087	Western granitic gneiss	Late biotite cross-cuts the fabric and replaces hornblende. Accessory minerals include zircon, apatite, garnet and allanite.
		Amphibolite pre-dates the main, regional fabric and display a planar foliation parallel to S1 (sometime crosscut S1), but crosscut the
		compositional layering of surrounding gneisses. Amphibolite may occur as boudins and lenses in the gneisses, implying a supracrustal origin, whilst other occurrences form arrays that suggest that the protolith was a crosscutting dike. The rocks consist predominantly of hornblende,
		plagioclase and biotite. Garnet, quartz and clinopyroxene are present in some amphibolites, but all three of phases never coexist. Relict
		clinopyroxene is commonly included in hornblende. Corundum and tourmaline occur as inclusions in garnet. The hornblende defines a
1088	Amphibolite	penetrative fabric.
		Sveabreen granitic gneiss (U-Pb zircon age of 1070-1100 Ma) occurs as tabular units, 0.1-3 km thick and up to 30 km in strike length. The
		gneisses are medium- to coarse-grained and strongly foliated. They are mostly monzogranitic and locally carry sillimanite and garnet. Carlsbad
		twins and rare composite porphyroclasts of plagioclase and K-feldspar are observed. Fine flakes of biotite along foliation planes constitute the
		mafic constituents (<15 %). Four main compositional variants are present: i) leucocratic, very coarse-grained, megacrystic granite, ii) darker porphyroclastic granite, iii) melanocratic granodiorite-diorite, and iv) equigranular leucogranite. The contacts between the Sveabreen gneiss
		and the surrounded rocks are mostly thrust bounded, although at some localities there appear to be gradational contacts with the country
1089	Sveabreen granitic gneiss	rock gneisses. The presence of two intersecting cleavages and folded foliations suggests that this granite pre-dates major deformation phases.
		Mafic sills of the Borgmassivet Intrusive Suite (~ 1107 Ma) comprise cryptically layered ultramafic sequence and mafic units. Olivine and
		orthopyroxene are the dominant cumulus phases in the ultramafic rocks, whereas orthopyroxene, plagioclase and clinopyroxene are the
	Mafic sills (Borgmassivet	primary phases of the mafic rocks. Gabbronorite, gabbro, quartz-diorite and diorite are observed. Xenoliths of Ritscherflya Supergroup are
1090	Intrusive Suite)	recorded.
		Diorite sills (~ 1107 Ma) intrude rocks of Ritscherflya Supergroup. The lower part of the sills comprises a medium-grained diorite overlain by
1091	Diorite (Borgmassivet Intrusive Suite)	quartz diorite pegmatite. Numerous vugs, partially filled with quartz, carbonate, chlorite and/or epidote are present in the sedimentary rocks up to 3m from the contact with the sills.
1051		The Straumsnutane lava formation is a part of Ritscherflya Supergroup (~ 1130-1107 Ma). The formation is exposed in the Ahlmannryggen
	Straumsnutane Formation	area, and has a total thickness of about 860 m. The Straumsnutane Formation is a highly altered porphyritic andesite with varying proportions
1092	(lavas)	of a glassy mesostasis. The lavas are intruded by dolerite and olivine-bearing basaltic dikes.
		The Fasettfjellet Formation (~ 1130-1107 Ma) forms an isolated exposure at Fasettfjellet in Borgmassivet. The Fasettfjellet Formation
		comprises a sequence of volcanic breccia and tuff beds (50-80 m thick), overlain by about 50 m of basaltic lava (the lower 10 m of which is
1093	Fasettfjellet Formation	pillowed). Locally, 7 m of quartz arenite is developed above the volcaniclastic units and lies immediately below the lava. Above the arenite the

	lower parts of the lave flow locally grade into hyploclastic denosits including isolated nillows. The Ecceptificated Formation is part of
	lower parts of the lava flow locally grade into hyaloclastite deposits including isolated pillows. The Fasettfjellet Formation is part of
	Jutulstraumen Group, Ritscherflya Supergroup. The Ritscherflya Supergroup, along with the Borgmassivet Intrusives, is represented in almost
	all of the nunataks in the Ahlmannryggen and Borgmassivet mountain ranges. The Ritscherflya Supergroup is divided into a lower clastic
	sedimentary sequence (the Ahlmannryggen Group) and an upper volcanosedimentary sequence (the Jutulstraumen Group).
	The 340m thick Istind Formation (~ 1130-1107 Ma) consists of alternating feldspathic quartzite, agglomerate, tuff and lava flows. The Istind
	Formation is part of the Jutulstraumen Group, which is a part of Ritscherflya Supergroup. The Ritscherflya Supergroup, along with the
	Borgmassivet Intrusives, is represented in almost all of the nunataks in the Ahlmannryggen and Borgmassivet mountain,. The Ritscherflya
	Supergroup is divided into a lower clastic sedimentary sequence (the Ahlmannryggen Group) and an upper volcanosedimentary sequence (the
Istind Formation	Jutulstraumen Group).
	The 500m thick Tindeklypa Formation (~ 1130-1107 Ma) consists of agglomerate with subordinate tuff and andesitic lava flows. The Tindeklypa
	Formation is part of the Jutulstraumen Group which is a part of Ritscherflya Supergroup. The Ritscherflya Supergroup, along with the
	Borgmassivet Intrusives, is represented in almost all of the nunataks in the Ahlmannryggen and Borgmassivet mountain ranges. The
	Ritscherflya Supergroup is divided into a lower clastic sedimentary sequence (the Ahlmannryggen Group) and an upper volcanosedimentary
Tindeklypa Formation	sequence (the Jutulstraumen Group).
	The Raudberget Formation (~ 1130-1107 Ma) is a uniform succession of fine-grained red arenites and siliceous red argillites with thin layers of
	mudchip breccia and thin sheets of quartz pebble conglomerate. The Raudberget Formation is part of Ahlmannryggen Group, Ritscherflya
	Supergroup. The Ritscherflya Supergroup, along with the Borgmassivet Intrusives, is represented in almost all of the nunataks in the
	Ahlmannryggen and Borgmassivet mountain ranges. The Ritscherflya Supergroup is divided into a lower clastic sedimentary sequence (the
Raudberget Formation	Ahlmannryggen Group) and an upper volcanosedimentary sequence (the Jutulstraumen Group).
	The Jekselen Formation (~ 1130-1107 Ma) is described as detached blocks (xenoliths) of steeply dipping arenaceous sediment in diorite of the
	Borgmassivet intrusive. The occurrence of this formation is restricted to the type locality, Jekselen nunatak, and isolated exposures at
	Tindeklypa. The sequence consists predominantly of calcareous sandstone units with well-developed crossbedding, and lesser amounts of
	shale and conglomerate. The Jekselen Formation is part of Ahlmannryggen Group, Ritscherflya Supergroup. The Ritscherflya Supergroup, along
	with the Borgmassivet Intrusives, is represented in almost all of the nunataks in the Ahlmannryggen and Borgmassivet mountain ranges. The
	Ritscherflya Supergroup is divided into a lower clastic sedimentary sequence (the Ahlmannryggen Group) and an upper volcanosedimentary
Joksolon Formation	
	sequence (the Jutulstraumen Group). The Høgfonna Formation (~ 1130-1107 Ma) is part of Ahlmannryggen Group, Ritscherflya Supergroup. The Høgfonna Formation consists of
	feldspathic quartzite, shale, jasper-bearing conglomerate and calcareous-jasper-bearing arenaceous sediments with red beds and tuff layers
	occurring towards the top of the formation. The Ritscherflya Supergroup, along with the Borgmassivet Intrusives, is represented in almost all of
	the nunataks in the Ahlmannryggen and Borgmassivet mountain ranges. The Ritscherflya Supergroup is divided into a lower clastic
Høgfonna Formation	sedimentary sequence (the Ahlmannryggen Group) and an upper volcanosedimentary sequence (the Jutulstraumen Group).
	The Schumacherfjellet Formation (~ 1130-1107 Ma) consists of a sequence of alternating light colored arenites and dark colored argillites. The
	formation crops out at Schumacherfjellet, Grunehogna, Lyftingen, Kjølrabbane, Styrbordsknattane, Ovenuten, Flårjuven, Flårjuvnutane and
	Klumpane. The Schumacherfjellet Formation is part of Ahlmannryggen Group, Ritscherflya Supergroup. The Ritscherflya Supergroup, along
	with the Borgmassivet Intrusives, is represented in almost all of the nunataks in the Ahlmannryggen and Borgmassivet mountain ranges. The
Schumacherfjellet	Ritscherflya Supergroup is divided into a lower clastic sedimentary sequence (the Ahlmannryggen Group) and an upper volcanosedimentary
Formation	sequence (the Jutulstraumen Group).
	The Framryggen Formation (~ 1130-1107 Ma) crops out at the north-western part of the Borgmassivet, and apart from the type locality
	(Framryggen nunatak) the formation occurs at Trioen, Framrabben, and Borga. The formation comprises a succession of alternating mudstones
	and greywackes, and although there is no exposure of the upper or lower contacts, it is inferred to have a conformable relationship with both
	the underlying Pyramiden, and the overlying Høgfonna Formation. The Framryggen Formation is part of Ahlmannryggen Group, Ritscherflya
Framryggen Formation	Supergroup. The Ritscherflya Supergroup, along with the Borgmassivet Intrusives, is represented in almost all of the nunataks in the
	Raudberget Formation Jekselen Formation Høgfonna Formation Schumacherfjellet Formation

		Ahlmannryggen and Borgmassivet mountain ranges. The Ritscherflya Supergroup is divided into a lower clastic sedimentary sequence (the
		Ahlmannryggen Group) and an upper volcanosedimentary sequence (the Jutulstraumen Group).
		The Pyramiden Formation (~ 1130-1107 Ma) is the lower base of the Ritscherflya Supergroup and consists essentially of thin and evenly
		bedded feldspathic greywacke alternating with dark grey siltstone. The Ritscherflya Supergroup, along with the Borgmassivet Intrusives, is
		represented in almost all of the nunataks in the Ahlmannryggen and Borgmassivet mountain ranges. The Ritscherflya Supergroup is divided
1101	Pyramiden Formation	into a lower clastic sedimentary sequence (the Ahlmannryggen Group) and an upper volcanosedimentary sequence (the Jutulstraumen Group).
		Banded orthogneiss (Kirwanveggen complex) comprises amphibole-biotite ± garnet gneiss and quartzofeldspathic gneiss intruded by
	Banded orthogneiss	amphibolite dikes and banded pink-grey leucogneiss with amphibolite interlayers and boudins. Early mafic schlieren are observed within the
1102	(Kirwanveggen complex)	more leucocratic parts of the unit.
		Migmatite (Kirwanveggen complex) is a fine- to medium-grained melanocratic rock, with leucosomes and melanosomes defining the gneissic
	Migmatite (Kirwanveggen	foliation. The major mineralogy comprises biotite, feldspar, quartz, amphibole and ± garnet. The gneiss is often highly tectonised. Calc-silicate
1103	complex)	and amphibolite boudins are often observed within the regional foliation of the migmatite. Vein-network of migmatitic gneisses are observed.
		The augen gneiss (Kirwanveggen complex) occurs as large concordant tabular bodies, which intrude surrounded banded gneiss and
		orthogneisses. The unit comprises quartz, feldspar, biotite ± garnet ± hornblende and has a distinctive augen texture defined by K-feldspar
	Augen gneiss (Kirwanveggen	porphyroclasts. The augen gneiss enclose remnants of charnockite and large amphibolite bodies. Biotite-rich varieties are common and
1104	complex)	evidence for localized partial melting and migmatization is widespread.
		Quartzitic mylonite (Kirwanveggen complex) is exposed at the Gavlpiggen, the thickness is about 220 m. Another outcrop is cropping out at
	Quartzitic mylonite	Klakknabben, where at least 15 m thick quartzite mylonites intercalated with mica schists. Petrographically, the mylonites are almost pure
1105	(Kirwanveggen complex)	quartzites, except from some few grains of plagioclase and a small amount of white mica (sericite).
		This unit includes coarse-grained, red granite, diorite, grey fine-grained granite veins and pegmatites. The red granite forms a large sheet-like
		body which locally crosscuts the layering in the older rocks at its southern margin. It is characterized by euhedral, pink K-feldspar crystals,
		other phases are quartz, plagioclase and minor biotite. At Laudalkammen the granite is intruded by diorite sills. The pegmatites are composed
	Laudalkammen granite	of microcline crystals intergrown with quartz, biotite and minor muscovite, garnet and accessory zircon. They clearly cut the main regional
1106	(Kottas Terrane)	penetrative (S2) foliation. The Laudalkammen granite represents the youngest Grenville-aged igneous intrusion of the Kottas terrane.
		The Buråsbotnen augen gneiss comprises granite and granodiorite gneiss. Individual sheets measure up to 400 m in thickness, intruded sub-
		parallel to the layering of the metavolcanosedimentary succession and the Vikenegga tonalite of the Kottas Terrane. The gneisses are typically
		composed of pink K-feldspar augen set in a fine- to medium-grained matrix of quartz, K-feldspar, oligoclase, green biotite and green
	Buråsbotnen augen gneiss	hornblende with accessory epidote, sphene and zircon. The darker granodioritic variety of the Buråsbotnen augen gneisses contain more
1107	(Kottas Terrane)	hornblende, biotite and sphene.
		The metavolcanosedimentary rocks is the oldest supracrustal sequence of the Kottas terrane, and is dominated by medium-grained banded
		grey gneisses, with broadly tonalitic composition. The supracrustals crop out at Leabotnen, Buråsbotnen, Lütkennupen and Arntzenrustene.
		They are interlayered on a centimeter- to decimeter-scale with leucocratic quartz-feldspar gneiss and amphibolite, and minor garnet-mica
		gneiss and calc-silicate rocks. The grey tonalitic gneiss contain plagioclase phenocrysts up to 1 cm in size, set in a medium- or fine-grained
		matrix of quartz, plagioclase, biotite and hornblende. Retrograde reactions include saussuritization of plagioclase, and localized growth of
		calcite and epidote. The subordinate, interlayered pink gneiss is fine- to medium-grained with rhyolitic composition, and contain small
		quantities of biotite as the only mafic phase. Layers and lenses, up to a few meters in thickness, of garnet-biotite-plagioclase gneiss, graphite-
	Undifferentiated	and garnet-bearing quartzite, calc-silicate rock, tremolite-forsterite marble and dolomitic marble are present. The grey and pink gneisses are
	metavolcanosedimentary	considered to represent metavolcanic/volcaniclastic rocks of dacitic/andesitic and rhyolitic composition. Fine-grained grey felsic gneiss with
1108	rocks (Kottas Terrane)	euhedral to subhedral plagioclase phenocrysts is interpreted as pyroclastic rocks.
	Vikenegga tonalite (Kottas	The Vikenegga tonalite is the oldest unit of the Kottas Terrane, and consists of sheet-like bodies of an amphibolite-quartz diorite-tonalite-
1109	Terrane)	trondhjemite-granodiorite sequence. The mafic and probably the oldest members of the Vikenegga tonalite include foliated occellar quartz

		diorite, which is composed of hornblende, plagioclase and biotite with accessory sphene, apatite and zircon. The rock unit also includes grey,
		coarse-grained tonalitic gneiss. The felsic members of the Vikenegga tonalite comprise thin sheets of leucocratic trondhjemite.
		The western nunatak of Vardeklettane is composed of fine- to medium-grained leucogranite gneiss which is composed of quartz, plagioclase,
		biotite, K-feldspar and garnet. Numerous mafic enclaves, veins and patches of greenish charnockite are present in the leucogranite. They
		contain granulite-facies mineral assemblages with clinopyroxene, orthopyroxene, plagioclase and hornblende. The nunatak of eastern
		Vardeklettane is structurally and lithologically different from the western nunatak. The younger gneiss is a dark-grey to black, weakly foliated
		quartz monzonite. Large patches of graphite are sporadically present. The monzonite intrudes an older porphyritic granite orthogneiss. The
		latter is a coarse-grained, foliated granitic gneiss with K-feldspar megacrysts and contains large xenolithic rafts of leucogranite/charnockite
	Granulite (Vardeklettane	similar to the western Vardeklettane rocks. The oldest rocks are represented by an approximately 400 m thick succession of metapelites and
1110	Terrane)	quartzites with two minor ultramafic enclaves.
		Banded gneiss (Jutulrøra complex) is interlayered with the lower part of the quartz-feldspar gneiss of the Jutulrøra complex and is
		distinguished from the latter by its strong compositional, meter-scale layering. The layers consist of felsic gneiss, amphibolite and subordinate
		Mg-rich mafic rocks, calcareous and semipelitic gneiss. The main constituents of mafic layers are hornblende and plagioclase with subordinate
		clinopyroxene, garnet, quartz, biotite, chlorite and epidote. The rocks display a fine- to medium-grained, granoblastic texture. The foliation is
		defined by hornblende, which is locally overgrown by biotite. Felsic layers are fine- to medium-grained, granoblastic quartzofeldspathic rocks.
		Planar fabrics are defined by garnet, hornblende and biotite with relict aluminosilicates. The interlayered concordant character and siliceous
	Banded gneiss (Jutulrøra	nature of the rocks suggest either a volcanoclastic or a sedimentary origin. Mg-rich mafic bands are pale green and display a weak schistose
1111	complex)	texture. Relict olivine and diopside are observed in some samples. Calc-silicate rocks are locally present.
		Quartz-feldspar gneiss (Jutulrøra complex) is felsic to intermediate rocks which are medium-grained, equigranular and homogeneous with
	Quartz-feldspar gneiss	respect to mineralogy. Typical assemblages comprise quartz, plagioclase, K-feldspar, hornblende, biotite and epidote with accessory apatite,
1112	(Jutulrøra complex)	zircon, titanite and allanite. The foliation is defined by hornblende which is partially overgrown by biotite and epidote.
		Marble and calc-silicate rock (Fuglefjellet complex) display a weakly foliated, fine- to coarse-grained granoblastic texture. Marble contain the
		mineral assemblage calcite, dolomite, tremolite, ± talc, ± phlogopite, ± serpentine and ± brucite. Serpentine and brucite aggregates are formed
	Marble and calc-silicate rock	after olivine. The mineralogy of the calc-silicate rocks comprises clinopyroxene, hornblende, plagioclase, quartz, ± sphene, ± scapolite, ± K-
1113	(Fuglefjellet complex)	feldspar, ± calcite, ± biotite, ± epidote, ± chlorite. Centimeter-scale banding is defined by alternating diopside- and hornblende-rich layers.
		Pelitic gneiss (Fuglefjellet complex) is similar to the banded gneiss of the Jutulrøra gneiss complex, and include quartzofeldspathic, mafic and
		Mg-rich gneiss. The quartzofeldspathic gneiss exhibits a medium-grained granoblastic texture, and contain plagioclase, K-feldspar, biotite,
		hornblende, clinopyroxene and garnet. The presence of deformed conglomerates and quartz-rich lithologies suggest a sedimentary origin for
		parts of the quartzofeldspathic sequence. The mafic gneiss is medium-grained, granoblastic and contain hornblende, biotite, plagioclase ±
	Pelitic gneiss (Fuglefjellet	clinopyroxene ± garnet ± epidote ± chlorite. The Mg-rich mafic gneiss contains serpentinized olivine, amphibole, phlogopite and talc. The
1114	complex)	gneissosity is defined by phlogopite and late serpentine. The Mg-rich rocks are interpreted to have an ultramafic igneous origin.
		Quartz-feldspar gneiss (Rootshorga complex) comprises quartz, feldspar and small amounts of biotite and garnet. Preservation of cross-
		bedding and metaconglomerate indicates a sedimentary origin for the unit. The rocks are granular to granoblastic, with highly strained ribbons
		and polygonised leaves of quartz. Abundant microcline is rarely perthitic. Garnet commonly forms atolls or thin, irregularly curved stringers.
	Quartz-feldspar gneiss	Quartz-rich gneisses are distinctly banded with local magnetite-rich laminae. The protolith is interpreted to be immature arenites and argillites.
1115	(Rootshorga complex)	Metamafic and calc-silicate gneiss are found as enclaves.
		Pelitic and semi-pelitic gneiss (Rootshorga complex) is fine- to medium-grained, banded and commonly display a migmatitic structure; they
		contain mafic and melanocratic lenses. Typical assemblages comprise quartz, plagioclase, K-feldspar, biotite, sillimanite, cordierite, garnet,
		hornblende and magnetite. Secondary chlorite can be observed. Gneisses showing gradational variations between the pelitic and
	Pelitic and semi-pelitic	quartzofeldspathic gneiss are medium- to coarse-grained, equigranular, with porphyroblasts of plagioclase and garnet. They contain
	gneiss (Rootshorga	hornblende with inclusions of relict augite, hypersthene and plagioclase. Their bulk compositions range from tonalitic to dioritic. Mafic and
1116	complex)	calc-silicate gneiss are found as inclusions in the pelitic and semi-pelitic gneisses.

		Granitic gneiss (Rootshorga complex) is a pre-tectonic (ca. 1131 ± 25 Ma) metagranitoid that occur as conformable units, irregularly shaped
		bodies and deformed layers/veins and leucosomes. The presence of dark-grey andesine porphyroclasts and xenocrystic garnets is notable.
		Mafic enclaves occur as amphibolite and biotite-garnet gneiss. The granitic gneiss exhibits a well-developed foliation, locally as a composite S-C
		fabric or double cleavage. No pre-existing foliation has been seen in any of the enclaves. The gneisses are characterized by normally zoned
		plagioclase, microperthitic K-feldspar porphyroclasts and myrmekite developed around the porphyroclastic feldspars. Biotite occurs
	Granitic gneiss (Rootshorga	predominantly in pressure shadows. Garnet is a common accessory phase, both as irregular relicts and small idiomorphic grains in plagioclase.
1117	complex)	Rare hornblende is associated with biotite. Tourmaline (schorlitic), zoisite, allanite, magnetite and titanite are present as accessory phases.
		The Cottontoppen granite represents the youngest plutonic rock in the Sivorg Terrane. It crops out at Cottontoppen, Worsfoldfjellet,
		Ryghnuten and Sirinuten. The granite is a leucocratic, fine- to medium-grained muscovite and garnet-bearing granite that is commonly
	Cottontoppen granite	associated with pegmatites. Plagioclase is strongly saussuritized. Late muscovite appears to overgrow the fabric. At Cottontoppen the intrusive
1118	(Sivorg Terrane)	contact crosscuts the metamorphic fabrics in the country rock gneisses.
		The Refsdahlbrekka granodiorite crops out at Ryghnuten and Sirinuten where it appears to have a partly refolded contact with felsic
		metavolcanic rocks. At Ryghnuten, the marginal zone of the intrusion contains numerous mafic xenoliths. The granodiorite intrudes both the
		Månesigden porphyritic granite and the Juckeskammen orthogneiss. Cuspate-lobate contact relationships between the granodiorite and the
	Refsdahlbrekka granodiorite	Månesigden porphyritic granite indicate that the Refsdahlbrekka granodiorite intruded before the Månesigden granite had completely
1119	(Sivorg Terrane)	solidified.
1115		The Worsfoldfjellet monzonite (1080-1045 Ma) crops out at Worsfoldfjellet and Cottontoppen. The monzonite has white K-feldspar
	Worsfoldfjellet monzonite	phenocrysts set in a dark grey matrix of plagioclase, biotite, garnet. Accessory phases are apatite and zircon. Plagioclase is commonly
1120	(Sivorg Terrane)	saussuritized. Some early biotite flakes display sagenitic texture, whereas secondary biotite lacks such exsolution features.
1120		
		The Månesigden porphyritic granite (1100-1050 Ma) is the most voluminous granitoid intrusion in Heimefrontfjella, and is exposed over large
		parts of Tottanfjella and Sivorgfjella. Large outcrops appear at Johsonhogna, Månesigden and Wrighthamaren. Mylonitic equivalents of the
		Månesigden porphyritic granite can be seen at Bieringmulen. The Månesigden porphyritic granite contains K-feldspar megacrysts up to 15 cm
	Månesigden porphyritic	in length, set in a coarse-grained matrix of variably saussuritized plagioclase, quartz, biotite, garnet and accessory hornblende, titanite, apatite
1121	granite (Sivorg Terrane)	and zircon.
	Cottontoppen diorite	Cottontoppen diorite is medium-grained, equigranular and crops out at Cottontoppen. It is composed of plagioclase, quartz, biotite, garnet
1122	(Sivorg Terrane)	and accessory apatite and zircon. Quartz ocelli, up to 5 mm in size, suggest that the intrusion has a hybrid nature.
	Granodiorite (Fish Gneiss-	The granodiorite (Fish Gneiss - 1080 Ma - Sivorg Terrane) is a medium-grained foliated granodiorite that crops out at Haldorsentoppen. The
1123	Sivorg Terrane)	large abundance of xenoliths (amphibolite, diorite, layered gneiss) is a characteristic feature of the granodiorite.
		Approximately half of the exposed basement of the Sivorg Terrane is made up of an, amphibolite grade metavolcanosedimentary succession.
		The successions are compositionally layered, consisting of paragneiss, schist, quartzite, marble and metapelite, pointing towards sedimentary
		protoliths. A distinct suite of "bimodal" banded gneiss is composed of a sequence of interlayered felsic granitic gneiss and amphibolite with
		sharp lithological boundaries. The bimodal gneisses are thought to represent metavolcanic rocks. The felsic part is characterized by
		predominantly fine- to medium-grained, pink granoblastic leucogranitic gneiss that is interlayered on a cm to 100 m-scale with mafic gneiss
		(amphibolites). The pink leucogneisses have broadly granitic composition with minor amounts of hornblende, garnet, epidote and titanite. The
		mafic layers consist of fine- to medium-grained amphibolite and hornblende-biotite gneiss. The mineralogy includes hornblende, plagioclase
		and biotite with minor amounts of quartz, epidote, titanite, garnet and other accessory minerals. Intermediate metavolcanic rocks consist of
		plagioclase, quartz, biotite and hornblende. Paragneiss is fine- to medium-grained and is composed of quartz, plagioclase, K-feldspar, biotite, ±
	Undifferentiated	muscovite, garnet, hornblende and sillimanite. Mica schist is interlayered with the paragneiss and is fine- to coarse-grained and consist of
	metavolcanosedimentary	biotite, plagioclase, K-feldspar, quartz, ± garnet, kyanite, and staurolite. Marble occurs as thin layers interbedded with paragneiss and mica
1124	-	
1124	rocks (Sivorg Terrane)	schist and is composed of calcite with accessory muscovite, titanite and opaque minerals. They are closely associated with calc-silicate rocks.

		A distinct suite of "bimodal" banded gneiss is composed of a sequence of interlayered felsic granitic gneiss and mafic amphibolite with sharp
	Metavolcanic rocks (Sivorg	lithological boundaries. These bimodal gneisses are thought to represent metavolcanic rocks. The part is characterized by predominantly fine-
1125	Terrane)	to medium-grained, pink granoblastic, leucogranitic gneiss that are interlayered on a cm to 100 m-scale with mafic gneisses (amphibolites).
	Metasedimentary rocks	This unit is compositionally layered, consisting of paragneiss, schist, quartzite, marble and metapelite, pointing towards sedimentary
1126	(Sivorg Terrane)	protoliths.
		The coarse-grained Juckeskammen orthogneiss makes up large parts of Juckeskammen and Bowrakammen. It is a relatively felsic granitic
		augen gneiss, in which large K-feldspar phenocrysts are set in a medium- to coarse-grained matrix of biotite, quartz and recrystallized
	Juckeskammen orthogneiss	plagioclase, with accessory apatite, zircon and opaque minerals. Its highly deformed nature, relative to the other granitoids in the Sivorg
1127	(Sivorg Terrane)	Terrane, suggests that it is one of the older intrusive units.
		Annandagstoppane gabbronorite (~ 1200 Ma) is orthocumulates-, medium-grained gabbronorite with minor anorthosite. Cumulus crystals are
	Annandagstoppane	plagioclase, orthopyroxene and clinopyroxene. Dikes and sills of quartz diorite, basalts, fine- to medium-grained dolerite and albitites intrude
1128	gabbronorite	the gabbronorite.
		The Annandagstoppane granite and granodiorite are fine-grained, leucocratic and intruded by meter-scale garnet-bearing pegmatite dikes with
	Annandagstoppane granite	sharp intrusive contacts. The crystallization age of the granite and granodiorite is determined to be 3067 ± 8 Ma (U-Pb zircon). Inherited zircon
1129	and granodiorite	grains with age of 3433 ± 8 Ma were found. Annandagstoppane granite and granodiorite are part of the Grunehogna Craton.